Multi-scale mathematical modelling of tumour growth and microenvironments in anti-angiogenic therapy
نویسندگان
چکیده
BACKGROUND Angiogenesis, a process of generation of new blood vessels from the pre-existing vasculature, has been demonstrated to be a basic prerequisite for sustainable growth and proliferation of tumour. Anti-angiogenic treatments show normalization of tumour vasculature and microenvironment at least transiently in both preclinical and clinical settings. METHODS In this study, we proposed a multi-scale mathematical model to simulate the dynamic changes of tumour microvasculature and microenvironment in response to anti-angiogenic drug endostatin (ES). We incorporated tumour growth, angiogenesis and vessel remodelling at tissue level, by coupling tumour cell phenotypes and endothelial cell behaviour in response to local chemical and haemodynamical microenvironment. RESULTS Computational simulation results showed the tumour morphology and growth curves in general tumour progression and following different anti-angiogenic drug strategies. Furthermore, different anti-angiogenic drug strategies were designed to test the influence of ES on tumour growth and morphology. The largest reduction of tumour size was found when ES is injected at simulation time 100, which was concomitant with the emergence of angiogenesis phase. CONCLUSION The proposed model not only can predict detailed information of chemicals distribution and vessel remodelling, but also has the potential to specific anti-angiogenic drugs by modifying certain functional modules.
منابع مشابه
A theoretical study of the response of vascular tumours to different types of chemotherapy
In this paper we formulate and explore a mathematical model to study continuous infusion of a vascular tumour with isolated and combined blood-borne chemotherapies. The mathematical model comprises a system of nonlinear partial differential equations that describe the evolution of the healthy (host) cells, the tumour cells and the tumour vasculature, coupled with distribution of a generic angio...
متن کاملComparison of anti-angiogenic properties of pristine carbon nanoparticles
Angiogenesis is vital for tumour formation, development and metastasis. Recent reports show that carbon nanomaterials inhibit various angiogenic signalling pathways and, therefore, can be potentially used in anti-angiogenic therapy. In the present study, we compared the effect of different carbon nanomaterials on blood vessel development. Diamond nanoparticles, graphite nanoparticles, graphene ...
متن کاملMolecular Mechanisms of Resistance to Tumour Anti-Angiogenic Strategies
Tumour angiogenesis, described by Folkman in the early seventies, is an essential, complex, and dynamic process necessary for the growth of all solid tumours. Among the angiogenic factors secreted by the tumour cells, the Vascular Endothelial Growth Factor (VEGF) is one of the most important. Most types of human cancer cells express elevated levels of this proangiogenic factor and its receptors...
متن کاملMathematical Modelling of Tumour Angiogenesis and the Action of Angiostatin as a Protease Inhibitor*
Tumour angiogenesis is the process whereby a capillary network is formed from a pre-existing vasculature in response to tumour secreted growth factors (TAF). The capillary network is largely composed of migrating endothelial cells which organise themselves into dendritic structures. In this paper we model angiogenesis via the theory of reinforced random walks, whereby the chemotactic response o...
متن کاملThe Anti-Proliferative and Anti-Angiogenic Effect of the Methanol Extract from Brittle Star
Background: Anti-angiogenic therapy is a crucial step in cancer treatment. The discovery of new anti-angiogenic compounds from marine organisms has become an attractive concept in anti-cancer therapy. Because little data correlated to the pro- and anti-angiogenic efficacies of Ophiuroidea, which include brittle star, the current study was designed to explore the anti-angiogenic potential of bri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 15 شماره
صفحات -
تاریخ انتشار 2016